Filter Bandpass Jepit Rambut Dilipat Berstruktur Pentanahan Terusak Arrowhead pada Frekuensi 3,1 GHz – 3,5 GHz
DOI:
https://doi.org/10.30811/litek.v22i2.72Keywords:
folded hairpin, filter bandpass, DGS, FR4Abstract
Sistem komunikasi nirkabel membutuhkan filter bandpass yang padu dan efisien untuk memilah sinyal pada frekuensi tertentu. Penelitian ini bertujuan merancang dan merealisasikan filter folded hairpin bandpass dengan struktur pentanahan terusak (DGS) berbentuk mata panah (arrowhead) yang berfungsi pada frekuensi 3,1–3,5 GHz untuk aplikasi radar pita S-band. Filter dirancang menggunakan substrat FR4 dengan konstanta dielektrik 4,3 dan dikembangkan melalui simulasi perangkat lunak. Rugi-rugi sisipan, rugi-rugi balik, dan lebar pita frekuensi hasil simulasi, secara berturut-turut adalah 4,081 dB, 35,742 dB, dan 459 MHz. Namun, filter yang direalisasikan mengalami pergeseran frekuensi tengah dari hasil simulasi menjadi 3,470 GHz, dengan rugi-rugi sisipan 6,894 dB dan rugi-rugi balik 6,894 dB, yang disebabkan oleh toleransi fabrikasi dan variasi karakteristik substrat. Penambahan arrowhead-DGS, pada ranah simulasi, meningkatkan nilai rugi-rugi sisipan dan rugi-rugi balik, meskipun pengaruhnya kurang signifikan dalam realisasi. Temuan ini menunjukkan potensi penggunaan substrat FR4 untuk filter frekuensi tinggi dengan optimasi lebih lanjut pada desain dan proses produksi.
Downloads
References
Pozar, D. M. (2001). Microwave and RF Design of Wireless Systems. Wiley.
Hong, J. S., & Lancaster, M. J. (2001). Microstrip Filters for RF/Microwave Applications. Wiley.
Peixeiro, C. (2011, October). Microstrip patch antennas: An historical perspective of the development. In 2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011) (p. 684-688). IEEE (Institute of Electrical and Electronics Engineers).
Bernhard, J. T., Meyes, P. E., Schaubert, D., & Mailloux, R. J. (2003, September). A Commemoration of Deschamps' and Sichak's 'Microstrip Microwave Antennas:' 50 Years of Development, Divergence, and New Directions. In 27th Antenna Application Symposium (p. 189-209). University of Massachusetts Amherst College of Engineering.
Munson, R. (1974, January). Conformal microstrip antennas and microstrip phased arrays. In IEEE Transactions on Antennas and Propagation (Vol. 22, No. 1, pp. 74-78).
Richards, W., Yuen Lo, & Harrison, D. (1981, January). An improved theory for microstrip antennas and applications. In IEEE Transactions on Antennas and Propagation (Vol. 29, No. 1, pp. 38-46).
Fonseca, S. D. A., & Giarola, A. (1984, June). Microstrip disk antennas, Part I: Efficiency of space wave launching. In IEEE Transactions on Antennas and Propagation (Vol. 32, No. 6, pp. 561-567).
Fonseca, S. D. A., & Giarola, A. (1984, June). Microstrip disk antennas, Part II: The problem of surface wave radiation by dielectric truncation. In IEEE Transactions on Antennas and Propagation (Vol. 32, No. 6, pp. 568-573).
Pozar, D. M. (1992, January). Microstrip Antennas. In Proceedings of the IEEE (Vol. 80, No. 1, pp. 79-91).
Prasojo, M. A., & Wildan, M. (2024, August). Studi Pengaruh Perubahan Dimensi Groundplane dan Panjang Line pada Antena Mikrostrip Meander Line Frekuensi 332 MHz. In JITET (Vol. 12, No. 3).
Vauzia, F., & Kirana, N. W. (2024, August). Pengaruh Bending pada Antena Mikrostrip Fleksibel untuk Aplikasi IoT. In JITET (Vol. 12, No. 3).
Aristarkhov, G. M., Kirillov, I. N., Markovsky, A. V., & Pustovalova, V. A. (2020, April). Compact Highly Selective Microstrip Filters with Folded Hairpin Resonators. In 2020 Systems of Signals Generating and Processing in the Field of on Board Communications. IEEE (Institute of Electrical and Electronics Engineers).
Sahar, S., Widad, I., Intan, S. Z. A., Mohd, H. J., Mohammed, H. B., & Asem, S. A. (2021, March). 5G Hairpin Bandpass Filter. In Jordanian Journal of Computers and Information Technology (Vol. 7, No. 1).
Su, L., Muñoz-Enano, J., Vélez, P., Martel, J., Medina, F., & Martí, F. (2021, November). On the Modeling of Microstrip Lines Loaded With Dumbbell Defect-Ground-Structure (DB-DGS) and Folded DB-DGS Resonators. In IEEE Access (Vol. 9, pp. 150878-150888).
Kurniawati, N., Vélez, P., Casacuberta, P., Su, L., Canalias, X., & Martín, F. (2025, June). Microstrip Line Loaded With Series Gap and Dumbbell Defect-Ground-Structure (DB-DGS) Resonator for Highly Sensitive Sensing Based on Resonance/Anti-resonance: Application to Humidity Measurements. In IEEE Sensors Letters (Vol. 9, No. 6, seq. 3501804).
Abdullah, M., Kiani, S. H., Shoaib, N., Ali, T., Elmannai, H., Algarni, A. D., & Khattak, U. F. (2024, September). An Eight Element Wideband DGS MIMO Antenna System for 5G Handheld Devices. In IEEE Access (Vol 12, pp. 141476-141488).
Khade, S., Chinchole, A., Pandey, P., Umredkar, S., Magare, V., & Sonkusale, M. (2020, July). Circularly Polarized Cylindrical Slot Antenna with and Without DGS. In 2020 the Fourth International Conference on Trends in Electronics and Informatics. IEEE (Institute of Electrical and Electronics Engineers).
Alexander, C. K., & Sadiku, M. N. O. (2009). Fundamentals of Electric Circuits. McGraw-Hill.
Balanis, C. A. (1997). Antenna Theory. Wiley.
García-Alcaide, N., Fernández-Prieto, A., Boix, R. R., Losada, V., Martel, J., & Medina, F. (2022, July). Design of Broadband Aperture-Coupled Stacked Microstrip Antennas Using Second-Order Filter Theory. In IEEE Transactions on Antennas and Propagation (Vol 70, No. 7, pp. 5345-5356)
Mattaei, G., Young, L., & Jones, E. M. T. (1980). Microwave Filters, Impedance-Matching Networks, and Coupling Structures. Artech House.
Pozar, D. M. (1980). Microwave Engineering. Wiley.
Parikh, N., Katare, P., Kathal, K.., Patel, N., & Chaitanya, G. (2015, May). Design and Analysis of Hairpin Micro-Strip Line Bandpass Filter. In International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering (Vol 3, No. 5, pp. 40-45).
Das, T. K., & Chatterjee, S. (2021, August). Multi-spurious harmonics suppression in folded hairpin line bandpass filter by meander spur-line. In International Journal of RF Microwave Computer-Aided Engineering (Vol 31, No. 11).
Hammerstad, E. O. (1975). Equations for Microstrip Circuit Design. In 1975 5th European Microwave Conference. IEEE (Institute of Electrical and Electronics Engineers).
Balanis, C. A. (2012). Advanced Engineering Electromagnetics. Wiley.
Zulhijjah, E. (2017). DESAIN DAN IMPLEMENTASI BANDPASS FILTER MIKROSTRIP HAIRPIN UNTUK APLIKASI WIMAX PADA FREKUENSI 3.3 - 3.4 GHZ (Bachelor thesis, Universitas Negeri Jakarta).
Wong, J. S. (1979, January). Microstrip tapped-line filter design. In IEEE Transactions on Microwave Theory and Techniques (Vol 27, No. 1, pp. 44-50).
Paarmann, L. D. (2001). Design and Analysis of Analog Filters: A Signal Processing Perspective. Kluwer.
Ismail, N., Gunawan, T. S., Praludi, T., & Hamidi, E. A. (2018, December). Design of Microstrip Hairpin Bandpass Filter for 2.9 GHz–3.1 GHz S-band Radar with Defected Ground Structure. In Malaysian Journal of Fundamental and Applied Sciences, (Vol. 14, No. 4, pp 448-455).
Ismail, N., Ulfah, S. M., Lindra, I., Awalluddin, A. S., Nuraida, I., & Ramdhani, M. A. (2019). Microstrip Hairpin Bandpass Filter for Radar S-Band with Dumbbell-DGS. In IEEE 5th International Conference on Wireless and Telematics (ICWT). IEEE (Institute of Electrical and Electronics Engineers).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jurnal Litek : Jurnal Listrik Telekomunikasi Elektronika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Litek : Jurnal Listrik Telekomunikasi Elektronika is licensed under Attribution-ShareAlike 4.0 International.